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ABSTRACT 

This paper, the second in a series, continues the investigation of numerical techniques 
for the integration of the time-dependent Schrijdinger equation in imaginary time, 
with particular emphasis on those methods that can be generalized easily to several 
spatial variables. 

I. INTRODUCTION 

This report is a continuation of the program begun in [l J. In this previous work 
we indicated how numerical integration of the Schrodinger equation in imaginary 
time may be used to generate quantum-mechanical bound states, in particular, 
the ground state.2 Various methods of performing the time integration were ap- 
lied to the S-wave Coulomb problem, quite successfully. The purposes of this 
program, however, lies in its potential application to the three-body problem 
with three spatial variables, and the generalization of these numerical methods 
to several dimensions presents some considerable difficulties. In this paper, we 
shall give several further prescriptions for the time integration-prescriptions 
designed for ease of generalization to several spatial variables. 

In I we investigated the utility of several integration schemes, accurate to both 

1 This work was performed under the auspices of the U.S. Atomic Energy Commission, under 
Contract No. W-7405-eng-48. 

2 We take this opportunity to correct a possible oversight in I. The idea of using imaginary 
time is hardly original and is traceable at least to 1942 (Feynman’s dissertation). Since then 
the method has been mentioned many times. 
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first and second order in the time-step 6~. While the particular approximations 
to the time-development operator worked admirably for the one-dimensional case, 
they are, with the exception of the explicit method, unsuitable for problems in 
more than one spatial dimension, with present-day high-speed computer memories. 
The explicit method is not feasible for three-body problems with realistic forces 
because, depending on the choice of coordinate system, the form of either the 
kinetic or potential energies aggravates the stability difficulties enormously. We 
therefore turn our attention to the construction of approximations to the time- 
development operator that can be generalized to several dimensions. Despite the 
fact that second-order schemes have been shown to converge much more rapidly 
to a stable energy, we shall look for both first- and second-order approximations 
that can be generalized. We do this because of the greater complexity of the com- 
putation at each time-step in the second-order schemes. 

If we consider a Schrijdinger equation in three suitably chosen variables x, 
y and z, the relevant operator can become 

exp(-66rH) = exp{-6t[T, + TV + T, + V(xyz)]} 

with no cross-derivative terms in the kinetic energy [2]. By use of the approxi- 
mation 

exp(--GzH) = exp{-&[T, + TV + T,]) exp[-&V(x, y, z)] 

= exp(-6tT,) exp(-6zT,) exp(-8tT,) exp(--GzV), 

we could then apply the methods of I to each factor. While this would be a lengthy 
computation, it would lie well within the bounds of feasibility for available fa- 
cilities. The objection to this procedure is, of course, that V(xyz) and T, (or T, 
or T,) do not necessarily commute with each other. We may, however, study the 
virtues and pitfalls of the factorization technique in the much simpler case of 
the one-dimensional S-wave radial problem, which also contains this all-impor- 
tant feature of noncommutatitivity. 

II. THE FIRST-ORDER APPROXIMATION 

We see from Eq. (I-8) that we are dealing with an operator of the form 

exp(-6zH) E exp(-&[T + VI}, 

where T and V do not commute. Consider the approximation (expansions of 
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this type are well-known [4].) 

exp(--6t[T + V]} - B[exp(-STT) exp(-&V) + exp(--StV) exp(-&T)]. (1) 

This approximate form, as can be verified by expansion of the separate terms, 
is correct to second order in at, the first correction term being proportional to 
(6~)~ and involving the commutator T, V.3 Expanding the separate exponentials, 
we obtain 

Thus, Eq. (I 8) becomes 

y(x, t i dt) = exp{-Bt[T + V]} y(x, t) 

or 

where 

and 

(1 + StV)(l + dtT)X,(x, t) = y&t) @a) 

(1 + 6rT)(l + &V)X,(x, t) = $9(x, t). (2b) 

In the restricted z-space, 0 _( z < 1 (defined in I), and using the Hamiltonian 
appearing in (I-13) and the spatial differences of (I-15), these equations can be 
solved by the methods contained in the Appendix of I. It will be noted, however, 
that the choice of 6r is now restricted if V is anywhere attractive. In particular, 
if V,nin is the largest negative value of the potential allowed by the spatial mesh, 
we require that 

ST I Knin I < I. (3) 

The wavefunction resulting from the integration with a mesh of 10 points and 

8 The reader will notice that since the exact Green’s functions for the separate exponential 
operators are known, one could, in principle, propagate the solution by evaluating suitable in- 
tegrals rather than making use of the differential equation. Since the leading correction term 
involves T, V, it is by no means clear that such a procedure would be preferable to the methods 
discussed below. A variation of the Green’s function is being studied by H. Sahlin and J. L. 
Schwartz, using Monte Carlo techniques (private communication). 
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a time-step 6-c = 0.01 is presented in Column a of Table I. The calculated energy 
appears in Table IT. It will be noted that neither the wavefunction nor the energy 
is remarkably good. In particular, in contrast to the results in I, the region near 
the origin is no longer described accurately. This is a direct result of the limita- 
tion on the time-step 6t. 

TABLE I 

THE U-HYDROGEN WAVEFUNCTION GIVEN BY THE SEVERAL INTEGRATION METHODP 

Exact 
x Wavefunct. a b C d 

.0526 .1357 

.llll .2703 

.1765 .4021 

.2500 .5293 

.3333 .6493 

.4286 .7590 

.5385 .8543 

.6667 .9304 

.8182 .9813 
1 .oOOo 1.0000 
1.2222 .9786 
1.5000 .9098 
1.8571 .7882 
2.3333 .6151 
3.0000 .4060 
4.0000 .1992 
5.667 .0532 
9.0000 .304 x 10-t 
19.0000 .289 x 1O-6 

- 
.3308 
- 

.5912 
- 

.8110 
- 

.9612 
- 

1.0000 
- 

.8749 
- 

.5539 
- 

.1471 
- 

,333 x 10-Z 
- 

- 
,2752 
- 

.5349 
- 

.7642 
- 

.9341 
- 

1.0000 
- 

.9021 
- 

.5918 
- 

.1619 
- 

.371 x 10-Z 
- 

- .1358 
.2710 .2703 
- .4021 

.5300 .5293 
- .6493 

.7596 .7590 
- .8543 

.9310 .9305 
- .9814 

1 .oOOo 1 0000 
- .9785 

.9070 .9092 
- .7861 

.6026 .6122 
- .4013 

.1729 .1933 
- ,0498 

.210 x 10-Z .345 x 10-p 
- 9.39 x 10-G 

a Columns read as follows: 
a -First order factorized method on a mesh of ten points; 
b-Continuation of case a with decreased time-step; 
c - Second-order factorized method on a mesh of ten points; 
d - Continuation of Column c with smaller time-step on a mesh of 20 points, using the inter- 

polation procedure. 

The time step was then cut by a factor of 10 and the integration continued for 
another 1500 time-steps. The resulting wavefunction appears in Column b of 
Table I and the energy in Table II. The improvement is apparent. 



452 GOLDBERG AND SCHWARTZ 

TABLE II 

ENERGY OF THE HYDROGEN lS-STATES AS GENERATED BY THE METHODS OF TABLE I 

Case” Time-step No. iterations Energy 

Exact - - -19000 

a 0901 1000 - 19086 

b 09001 1500 -19017 

C 0903 280 -19017 

d 0901 700 - 19004 

u Categories a-d the same as their respective columns in Table I. 

While a function of this accuracy would be quite acceptable for a three-body 
system, the large number of time-steps required would make such a calculation 
prohibitively lengthy. 

III. THE SECOND-ORDER APPROXIMATION 

In light of these results, a second-order approximation might be desirable. 
There are many ways of generating such approximations. For example. Eq. (1) 
could be written as 

+ [exp(-6tT) exp(-&V) + exp(-6zV) exp(-StT)] 

This expression approximates exp(-&H) correctly to second order in 6~. The 
separate terms are correct only to order St. The operator exp(-&H) can also 
be written as 

exp(-MY) = exp(-bt[T + V} 

1 
{ 

1 1 
- z 1 + (@t)T 1 + (Qt)V [l - (Q6r)VlP - (T&m 

1 
+ 

1 
1 + 1 (imv + (hw~ 

[I - (~dz)T][l - (tartvl}. (5) 
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Each term represents exp(-&H) correctly to second order. Moreover, an ex- 
pansion of each factor demonstrates that the leading correction to (5) is propor- 
tional to (8t)3[TV + VT]H, whereas the leading correction to (4) contains 
(BT)~[TVT + VW]. Since in many problems of interest the operators V and T 
can become singular (for example, at the origin in the Coulomb problem), while 
their sum H remains bounded, the leading correction to (5) appears to be less 
singular. Hence Eq. (5) seemingly represents a more preferable expansion than 
does (4), and we shall confine ourselves to (5). Eq. (5) then represents a set of 
equations analogous to (2), (2a), and (2b) relating ~(x, t + at) to y(x, t) and 
which can be solved in like manner. Similarly, there is a limitation on the choice 
of 6t for attractive potentials. 

Using the same Hamiltonian as above, and choosing 6t = 0.03, Eq. (5) has 
been iterated over a mesh of 10 points. The resulting wavefunction and energy 
appears in Column c Table I and in Table II, respectively. To obtain a more 
detailed wavefunction, the time-independent Schrodinger equation was used as 
described in I to provide interpolated starting values on a mesh of 20 points. 
The integration was continued with 6t = 0.01, with results in Table I, Column d, 
and in Table II. Since the amount of computation per time step is only twice 
that of the first-order approximation, the desirability of the second-order method 
is obvious. 

It is obvious that, even with these crude spatial meshes, the method produces 
accurate wavefunctions and energies. 
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